Proofs Involving Real Numbers
Facts
- \(a^2 \geq 0, \forall a \in \mathbb{R}\)
- \(a^n \geq 0, \forall a \in \mathbb{R}\) if \(n \in \mathbb{Z}\) is even.
- \(a^n < 0, \forall a < 0\) if \(n \in \mathbb{Z}\) is odd.
- \([ab > 0] \iff a > 0\) INCOMPLETE
Let \(a, b, c \in \mathbb{R}\).
- \(a \geq b\), divide by \(c \geq 0\)
- \(ac \geq bc\)
- \(a \geq b\), divide by \(c > 0\)
- \(\tfrac{a}{c} \geq \tfrac{b}{c}\).
- \(a > b\), multiply or divide by \(c > 0\)
- \(ac > bc\)
- \(\tfrac{a}{c} > \tfrac{b}{c}\)
- \(a > b\), multiply or divide by \(c < 0\)
- \(ac < bc\)
- \(\tfrac{a}{c} < \tfrac{b}{c}\)
Theorem 4.13 (Zero Product Rule)
-
Let \(x, y \in \mathbb{R}\).
-
If \(xy = 0\), then \(x = 0\) or \(y = 0\).
- Note: this provides a "proof technique"
- If a product of reals is 0, then one of those reals must be 0.
- Note: this provides a "proof technique"
-
Proof: Assume \(xy = 0\).
- WLOG, consider \(x\).
- Case 1: \(x = 0\): Done :)
- Case 2: \(x \neq 0\).
- So \(\tfrac{1}{x}\) is defined.
- Observe: \[ \begin{align} xy &= 0\\ \tfrac{1}{x}(xy) &= \tfrac{1}{x}(0)\\ y &= 0 \quad \blacksquare \end{align} \]
-
Alternate Proof (Contrapositive)
- Assume \(\neg(x = 0 \vee y = 0)\)
- So \(x \neq 0 \wedge y \neq 0\)
- From here, solve by cases (\(x > 0, y > 0\), etc)
- Assume \(\neg(x = 0 \vee y = 0)\)
Result 4.14: Let \(x \in \mathbb{R}\).
- If \(x^3-5x^2+3x = 15\), then \(x = 5\).
- Proof: Assume \(x^3 - 5x^2 + 3x = 15\).
\[ \begin{align} x^3 - 5x^2 + 3x - 15 &= 0\\ x^2(x-5) + 3(x-5) &= 0\\ (x^2+3)(x-5) &= 0\\ \end{align} \]
- By the Zero Product Rule, either \(x^2+3 = 0\) or \(x-5 = 0\).
- \(x^2+3 = 0 \implies x^2=-3\) (contradiction)
- \(x - 5 = 0 \implies x=5\) \(\blacksquare\)