Fundamental Properties of Logical Equivalence

Theorem 2.18 - Fundamental Logical Equivalences

    • \((P \vee Q) \iff (Q \vee P)\)
    • \((P \wedge Q) \iff (Q \wedge P)\)
    • \(P \vee (Q \vee R) \iff (P \vee Q) \vee R\)
    • \(P \wedge (Q \wedge R) \iff (P \wedge Q) \wedge R\)
    • \(P \vee (Q \wedge R) \iff (P \vee Q) \wedge (P \vee R)\)
    • \(P \wedge (Q \vee R) \iff (P \wedge Q) \vee (P \wedge R)\)
    • \(\neg{(P \vee Q)} \iff (\neg{P}) \wedge (\neg{Q})\)
    • \(\neg{(P \wedge Q)} \iff (\neg{P}) \vee (\neg{Q})\)

Example: Write negations of the following open sentences:

  • internet was unstable during lecture, couldn't get these copied down. should be in recording from September 1st!