1.3 Set Operations

Note: All sets here are subsets of some universal set \(\mathbb{U}\).

Intersection: \(A \cap B = \{ x \in \mathbb{U}: x \in A \text{ and } x \in B \}\)

  • Disjoint: If \(A \cap B = \emptyset\), we say \(A, B\) are disjoint.

Union: \(A \cup B = \{ x \in \mathbb{U}: x \in A \text{ or } x \in B \}\)

Difference: \(A \backslash B = \{ x \in \mathbb{U}: x \in A \text{ and } x \notin B \}\)

Complement of \(A\): \(\overline{A} = \mathbb{U} \backslash A = \{ x \in \mathbb{U}: x \notin A \}\)

\(A \backslash B = A \cap \overline{B}\)

Warning! \(\overline{\mathbb{N}}\): what is the universal set \(\mathbb{U}\)?