Proofs Involving Congruence of Integers
Motivation
Let \(x, y \in \mathbb{Z}\).
- \(n = 2\): \(x, y\) must have the form \(2q\) or \(2q+1, q \in \mathbb{Z}\).
- Observe: \(x - y = \{2a-2b, (2a+1) - (2b+1)\} = 2(a-b)\).
- \(n = 3\): \(x, y\) must have the form \(3q, 3q+1, 3q+2, q \in \mathbb{Z}\).
- Observe: \(x - y = \{3a-3b, (3a+1)-(3b+1), (3a+2)-(3b+2)\} = 3(a-b)\).
For \(a, b, n \in \mathbb{Z}, n \geq 2\), we say \(a\) is congruent to \(b \pmod n\) written \(a \equiv b \pmod n\)
- "\(a\) equals \(b\) \(\pm\) a multiple of \(n\)"
- means \(n \mid (a-b)\).
New Interpretation: \(x \in \mathbb{Z}\).
- \(x = 2q\) or \(x = 2q+1, q \in \mathbb{Z}\).
- \(x \equiv 0 \pmod 2\) or \(x \equiv 1 \pmod 2\).
Result 4.9: let \(a, b, k, n \in \mathbb{Z}, n \geq 2\).
- If \(a \equiv b \pmod n\), then \(ka \equiv kb \pmod n\).
- Proof:
- Assume \(a \equiv b \pmod n\).
- This means \(n \mid (a - b)\).
- Hence \(a - b = nx, x \in \mathbb{Z}\).
- We want to show that \(ka \equiv kb \pmod n\), meaning \(n \mid (ka - kb)\)
- hence \(ka - kb = n\square, \square \in \mathbb{Z}\).
- Observe:
\[ \begin{align} ka - kb &= k(a - b)\\ &= k(nx)\\ &= n(kx) \end{align} \]
- Thus \(ka \equiv kb \pmod n\). \(\blacksquare\)
Result 4.10: let \(a, b, c, d, n \in \mathbb{Z}, n \geq 2\).
- If \(a \equiv b \pmod n\) and \(c \equiv d \pmod n\)
- Then \(a + c \equiv b + d \pmod n\)
- Proof:
- Assume \(a \equiv b \pmod n\) and \(c \equiv d \pmod n\).
- meaning \(n \mid (a-b)\) and \(n \mid (c-d)\)
- Hence \(a - b = nx\) and \(c - d = ny, x, y \in \mathbb{Z}\)
- We want to show that \(a + c \equiv b+d \pmod n\), meaning \(n \mid \left[(a+c)-(b+d)\right]\)
- Observe:
- Assume \(a \equiv b \pmod n\) and \(c \equiv d \pmod n\).
\[ \begin{align} (a + c) - (b + d) &= (a - b) + (c - d)\\ &= nx + ny\\ &= n(x + y) \end{align} \]
- So \(a + c \equiv b + d \pmod n\)
Result 4.11: let \(a, b, c, d, n \in \mathbb{Z}, n \geq 2\).
- If \(a \equiv b \pmod n\) and \(c \equiv d \pmod n\)
- Then \(ac \equiv bd \pmod n\).
- Proof: Assume \(a \equiv b \pmod n\) and \(c \equiv d \pmod n\).
- So, \(a - b = nx\) and \(c - d = ny, x, y \in \mathbb{Z}\).
- We want to show that \(ac \equiv bd \pmod n\), so \(ac-bd = n\square, \square \in \mathbb{Z}\).
- we have \(a = b+nx\) and \(c = d+ny\)
- Observe:
\[ \begin{align} ac-bd &= (b+nx)(d+ny)-bd\\ &= bd+bny + nxd + nxny - bd\\ &= n(by+xd+xny) \end{align} \]
- So \(ac \equiv bd \pmod n\). \(\blacksquare\)
Result 4.12: let \(n \in \mathbb{Z}\).
- If \(n^2 \not\equiv n \pmod 3\)
- then \(n \not\equiv 0 \pmod 3\) and \(n \not\equiv 1 \pmod 3\)
- For equals:
- \(n^2 \neq n \implies [n \neq 0 \wedge n \neq 1]\) means \([n = 0\) or \(n = 1] \implies n^2=n\)
- For equals:
- Proof by Contrapositive
- Assume \(\neg[n \not\equiv 0 \pmod 3]\) and \(n \not\equiv 1 \pmod 3\).
- \(n \equiv 0 \pmod 3\) OR \(n \equiv 1 \pmod 3\).
- We want to show that \(n^2 \equiv n \pmod 3\), so \(n^2 - n = 3\square, \square \in \mathbb{Z}\).
- Case 1: \(n \equiv 0 \pmod 3\)
- So \(n - 0 = 3k, k \in \mathbb{Z}\).
- Observe: \(n^2 - n = (3k)^2-(3k) = 3(3k^2-k)\).
- So \(n^2 \equiv n \pmod 3\).
- Case 2: \(n \equiv 1 \pmod 3\).
- So \(n - 1 = 3j, j \in \mathbb{Z}\).
- \(n = 1+3j\).
- Observe: \[ \begin{align} n^2-n &= (1+3j)^2 - (1+3j)\\ &= 1 + 6j + 9j^2 - 1 -3j\\ &= 3(2j+3j^2-j) \end{align} \]
- So \(n^2 \equiv n \pmod 3\).
- So \(n - 1 = 3j, j \in \mathbb{Z}\).
- Assume \(\neg[n \not\equiv 0 \pmod 3]\) and \(n \not\equiv 1 \pmod 3\).