Proofs Involving Divisibility of Integers
Divides: if \(a, b \in \mathbb{Z}\) with \(a \neq 0\), we say "\(a\) divides \(b\)" if \(\exists c \in \mathbb{Z}: b = ac\).
-
We write \(a \mid b\).
-
We also say:
- \(b\) is a multiple of \(a\).
- \(a\) is a divisor of \(b\).
-
If \(a\) does not divide \(b\), we write \(a \nmid b\).
-
Old: \(ab\) even \(\iff a\) is even or \(b\) is even.
-
New: \(2 \mid ab \iff 2 \mid a \vee 2 \mid b\)
Result 4.1: let \(a, b, c \in \mathbb{Z}\) with \(a \neq 0\) and \(b \neq 0\).
- If \(a \mid b\) and \(b \mid c\), then \(a \mid c\).
- Proof:
- Assume \(a \mid b\) and \(b \mid c\).
- Then \(b = ax\) and \(c = by\), \(x, y \in \mathbb{Z}\).
- We want to show that \(a \mid c\), meaning \(c = a \cdot \square, \square \in \mathbb{Z}\).
- Observe:
\[ \begin{align} c = by = (ax)y = a(xy) \end{align} \]
- So \(a \mid c\). \(\blacksquare\)
Result 4.3: let \(a, b, c, x, y \in \mathbb{Z}\), where \(a \neq 0\).
- If \(a \mid b\) and \(a \mid c\), then \(a \mid (bx + cy)\).
- Proof:
- Assume \(a \mid b\) and \(a \mid c\), \(a \neq 0\).
- Wrong: Then \(b = ax\) and \(c = ay, x, y \in \mathbb{Z}\).
- We've already used \(x\) and \(y!\)
- Then \(b = ar\) and \(c = as, r, s \in \mathbb{Z}\).
- We want to show that \(a \mid (bx+cy\) meaning \(bx+cy = a \cdot \square, \square \in \mathbb{Z}\).
- Observe:
\[ \begin{align} bx + cy &= (ar)x+(as)y\\ &= a(rx+sy) \end{align} \]
- So \(a \mid (bx+cy)\). \(\blacksquare\)
Result 4.4: let \(x \in \mathbb{Z}\). If \(2 \mid (x-1)\), then \(4 \mid (x-1)\).
- Proof:
- Assume \(2 \mid (x^2-1)\).
- So \(x^2 - 1 = 2y, y \in \mathbb{Z}\).
- We want to show that \(4 \mid (x^2-1)\), meaning \(x^2-1 = 4 \cdot square, \square \in \mathbb{Z}\).
- It's not clear what to do here!
- That indicates that we probably need to try another path.
- Try isolating the x term: \(x^2 = 2y+1\).
- Notice: \(2y+1\) is odd, and we have a theorem saying that \(r^2\) odd \(\iff r\) odd!
- This means \(x\) is odd.
- So \(x = 2u+1, u \in \mathbb{Z}\).
- Observe:
\[ \begin{align} x^2 - 1 &= (2u+1)^2-1\\ &= 4u^2+4u+1-1\\ &= 4(u^2+u) \end{align} \]
- So \(4 \mid (x^2-1)\). \(\blacksquare\)
Result 4.5: Let \(x, y \in \mathbb{Z}\). If \(3 \nmid xy\), then \(3 \nmid x\) and \(3 \nmid y\).
- Proof by Contrapositive
- Assume \(~(3 \nmid x)\) and \(\neg 3\nmid y\)
- \(3 \mid x\) or \(3 \mid y\).
- So \(x = 3s\) or \(y = 3t\), \(s, t \in \mathbb{Z}\).
- We want to show that \(3 \mid xy\), meaning \(xy = 3\square, \square \in \mathbb{Z}\).
- WLOG, assume \(3\mid x\), meaning \(x = 3s\).
- Observe: \(xy = (3s)y = 3(sy)\).
- So \(3 \mid xy\).
- Assume \(~(3 \nmid x)\) and \(\neg 3\nmid y\)
Handy Observations: let \(n \in \mathbb{Z}\).
- \(n = 2q\) or \(n = 2q+1\), \(q \in \mathbb{Z}\).
- \(n = 3q\) or \(n = 3q+1\) or \(n = 3q+2\), \(q \in \mathbb{Z}\).
- For multiples of 2, we have 2 sets. Multiples of 3, 3 sets. Multiples of 4?
- Notice the pattern :)
Result 4.6 let \(x \in \mathbb{Z}\).
- If \(3 \nmid (x^2-1)\), then \(3 \mid x\).
- Proof by Contrapositive:
- Assume \(3 \nmid x\).
- So \(x\) is not a multiple of 3.
- So by the handy observation, \(x = 3q+1\) or \(x = 3q+2\), \(q \in \mathbb{Z}\).
- We want to show that \(3 \mid (x^2-1)\), meaning \(x^2-1 = 3\square, \square \in \mathbb{Z}\).
- Case 1: \(x = 3q+1\)
\[
\begin{align}
x^2-1 &= (3q+1)^2 - 1\\
&= 9q^2+6q+1-1\\
&= 3(3q^2+2q)
\end{align}
\]
- So \(3 \mid (x^2 - 1)\).
- Case 2: \(x = 3q+2\).
\[
\begin{align}
x^2 - 1 &= (3q+2)^2\\
&= 9q^2 + 12q + 4 - 1\\
&= 9q^2 + 12q + 3\\
= 3(3q^2+4q+1)
\end{align}
\]
- So \(3 \mid (x^2-1)\).
- Case 1: \(x = 3q+1\)
\[
\begin{align}
x^2-1 &= (3q+1)^2 - 1\\
&= 9q^2+6q+1-1\\
&= 3(3q^2+2q)
\end{align}
\]